On the Rate of Local Convergence of High-Order-Infeasible-Path-Following Algorithms for P*-Linear Complementarity Problems
نویسندگان
چکیده
A simple and uniied analysis is provided on the rate of local convergence for a class of high-order-infeasible-path-following algorithms for the P-linear complementarity problem (P-LCP). It is shown that the rate of local convergence of a-order algorithm with a centering step is + 1 if there is a strictly complementary solution and (+ 1)=2 otherwise. For the-order algorithm without the centering step the corresponding rates are and =2, respectively. The algorithm without a centering step does not follow the xed traditional central path. Instead, at each iteration, it follows a new analytic path connecting the current iterate with an optimal solution to generate the next iterate. An advantage of this algorithm is that it does not restrict iterates in a sequence of contracting neighborhoods of the central path. Abbreviated Title. Local convergence of high-order algorithms for P-LCP AMS(MOS) subject classiications. 90C33
منابع مشابه
On the Convergence of the Iteration Sequence of Infeasible Path following Algorithms for Linear Complementarity Problems (revised Version)
A generalized class of infeasible-interior-point methods for solving horizontal linear complementarity problem is analyzed and suucient conditions are given for the convergence of the sequence of iterates produced by methods in this class. In particular it is shown that the largest step path following algorithms generates convergent iterates even when starting from infeasible points. The comput...
متن کاملOn the Convergence of the Iteration Sequence of Infeasible Path Following Algorithms for Linear Complementarity Problems
A generalized class of infeasible-interior-point methods for solving horizontal linear complementarity problem is analyzed and suucient conditions are given for the convergence of the sequence of iterates produced by methods in this class. In particular it is shown that the largest step path following algorithms generates convergent iterates even when starting from infeasible points. The comput...
متن کاملA full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem
A full Nesterov-Todd (NT) step infeasible interior-point algorithm is proposed for solving monotone linear complementarity problems over symmetric cones by using Euclidean Jordan algebra. Two types of full NT-steps are used, feasibility steps and centering steps. The algorithm starts from strictly feasible iterates of a perturbed problem, and, using the central path and feasi...
متن کاملA superquadratic infeasible-interior-point method for linear complementarity problems
We consider a modiication of a path-following infeasible-interior-point algorithm described by Wright. In the new algorithm, we attempt to improve each major iterate by reusing the coeecient matrix factors from the latest step. We show that the modiied algorithm has similar theoretical global convergence properties to those of the earlier algorithm, while its asymptotic convergence rate can be ...
متن کاملLocal convergence of predictor-corrector infeasible-interior-point algorithms for SDPs and SDLCPs
An example of SDPs (semide nite programs) exhibits a substantial di culty in proving the superlinear convergence of a direct extension of the Mizuno-Todd-Ye type predictorcorrector primal-dual interior-point method for LPs (linear programs) to SDPs, and suggests that we need to force the generated sequence to converge to a solution tangentially to the central path (or trajectory). A Mizuno-Todd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 14 شماره
صفحات -
تاریخ انتشار 1999